MakeItFrom.com
Menu (ESC)

1050 Aluminum vs. 5019 Aluminum

Both 1050 aluminum and 5019 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 1050 aluminum and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 4.6 to 37
2.2 to 18
Fatigue Strength, MPa 31 to 57
100 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 52 to 81
170 to 210
Tensile Strength: Ultimate (UTS), MPa 76 to 140
280 to 360
Tensile Strength: Yield (Proof), MPa 25 to 120
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 650
540
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
29
Electrical Conductivity: Equal Weight (Specific), % IACS 200
98

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
9.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 22
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 4.6 to 110
110 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 7.8 to 14
29 to 38
Strength to Weight: Bending, points 15 to 22
35 to 42
Thermal Diffusivity, mm2/s 94
52
Thermal Shock Resistance, points 3.4 to 6.2
13 to 16

Alloy Composition

Aluminum (Al), % 99.5 to 100
91.5 to 95.3
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0 to 0.050
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 0 to 0.050
4.5 to 5.6
Manganese (Mn), % 0 to 0.050
0.1 to 0.6
Silicon (Si), % 0 to 0.25
0 to 0.4
Titanium (Ti), % 0 to 0.030
0 to 0.2
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants