MakeItFrom.com
Menu (ESC)

1050 Aluminum vs. AISI 316 Stainless Steel

1050 aluminum belongs to the aluminum alloys classification, while AISI 316 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050 aluminum and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.6 to 37
8.0 to 55
Fatigue Strength, MPa 31 to 57
210 to 430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 52 to 81
350 to 690
Tensile Strength: Ultimate (UTS), MPa 76 to 140
520 to 1180
Tensile Strength: Yield (Proof), MPa 25 to 120
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 170
590
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 650
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Calomel Potential, mV -750
-50
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.9
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 1200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 22
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 4.6 to 110
130 to 1820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 7.8 to 14
18 to 41
Strength to Weight: Bending, points 15 to 22
18 to 31
Thermal Diffusivity, mm2/s 94
4.1
Thermal Shock Resistance, points 3.4 to 6.2
11 to 26

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
62 to 72
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0

Comparable Variants