MakeItFrom.com
Menu (ESC)

1050 Aluminum vs. EN 1.4859 Stainless Steel

1050 aluminum belongs to the aluminum alloys classification, while EN 1.4859 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050 aluminum and the bottom bar is EN 1.4859 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.6 to 37
23
Fatigue Strength, MPa 31 to 57
140
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 76 to 140
490
Tensile Strength: Yield (Proof), MPa 25 to 120
210

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 650
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
6.2
Embodied Energy, MJ/kg 160
88
Embodied Water, L/kg 1200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 22
91
Resilience: Unit (Modulus of Resilience), kJ/m3 4.6 to 110
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.8 to 14
17
Strength to Weight: Bending, points 15 to 22
17
Thermal Diffusivity, mm2/s 94
3.4
Thermal Shock Resistance, points 3.4 to 6.2
11

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
40.3 to 49
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0