MakeItFrom.com
Menu (ESC)

1050 Aluminum vs. C82200 Copper

1050 aluminum belongs to the aluminum alloys classification, while C82200 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050 aluminum and the bottom bar is C82200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 4.6 to 37
8.0 to 20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 76 to 140
390 to 660
Tensile Strength: Yield (Proof), MPa 25 to 120
210 to 520

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 650
1040
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 230
180
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
45
Electrical Conductivity: Equal Weight (Specific), % IACS 200
46

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
4.8
Embodied Energy, MJ/kg 160
74
Embodied Water, L/kg 1200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 22
49 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 4.6 to 110
180 to 1130
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 7.8 to 14
12 to 20
Strength to Weight: Bending, points 15 to 22
13 to 19
Thermal Diffusivity, mm2/s 94
53
Thermal Shock Resistance, points 3.4 to 6.2
14 to 23

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Beryllium (Be), % 0
0.35 to 0.8
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 0.050
97.4 to 98.7
Iron (Fe), % 0 to 0.4
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
1.0 to 2.0
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0
0 to 0.5