MakeItFrom.com
Menu (ESC)

1050 Aluminum vs. C96400 Copper-nickel

1050 aluminum belongs to the aluminum alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050 aluminum and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
140
Elongation at Break, % 4.6 to 37
25
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
51
Tensile Strength: Ultimate (UTS), MPa 76 to 140
490
Tensile Strength: Yield (Proof), MPa 25 to 120
260

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 640
1240
Melting Onset (Solidus), °C 650
1170
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 230
28
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 200
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
45
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
5.9
Embodied Energy, MJ/kg 160
87
Embodied Water, L/kg 1200
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 22
100
Resilience: Unit (Modulus of Resilience), kJ/m3 4.6 to 110
250
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 7.8 to 14
15
Strength to Weight: Bending, points 15 to 22
16
Thermal Diffusivity, mm2/s 94
7.8
Thermal Shock Resistance, points 3.4 to 6.2
17

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 0 to 0.050
62.3 to 71.3
Iron (Fe), % 0 to 0.4
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Nickel (Ni), % 0
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0
0 to 0.5