MakeItFrom.com
Menu (ESC)

1050 Aluminum vs. N06230 Nickel

1050 aluminum belongs to the aluminum alloys classification, while N06230 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050 aluminum and the bottom bar is N06230 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 4.6 to 37
38 to 48
Fatigue Strength, MPa 31 to 57
250 to 360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
83
Shear Strength, MPa 52 to 81
420 to 600
Tensile Strength: Ultimate (UTS), MPa 76 to 140
620 to 840
Tensile Strength: Yield (Proof), MPa 25 to 120
330 to 400

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 650
1300
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 230
8.9
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
85
Density, g/cm3 2.7
9.5
Embodied Carbon, kg CO2/kg material 8.3
11
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1200
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 22
200 to 330
Resilience: Unit (Modulus of Resilience), kJ/m3 4.6 to 110
250 to 380
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 50
21
Strength to Weight: Axial, points 7.8 to 14
18 to 25
Strength to Weight: Bending, points 15 to 22
17 to 21
Thermal Diffusivity, mm2/s 94
2.3
Thermal Shock Resistance, points 3.4 to 6.2
17 to 23

Alloy Composition

Aluminum (Al), % 99.5 to 100
0.2 to 0.5
Boron (B), % 0
0 to 0.015
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20 to 24
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
0 to 3.0
Lanthanum (La), % 0
0.0050 to 0.050
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0.3 to 1.0
Molybdenum (Mo), % 0
1.0 to 3.0
Nickel (Ni), % 0
47.5 to 65.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0.25 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Tungsten (W), % 0
13 to 15
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0