MakeItFrom.com
Menu (ESC)

1050 Aluminum vs. N06603 Nickel

1050 aluminum belongs to the aluminum alloys classification, while N06603 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050 aluminum and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.6 to 37
28
Fatigue Strength, MPa 31 to 57
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 52 to 81
480
Tensile Strength: Ultimate (UTS), MPa 76 to 140
740
Tensile Strength: Yield (Proof), MPa 25 to 120
340

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 640
1340
Melting Onset (Solidus), °C 650
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
11
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1200
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 22
170
Resilience: Unit (Modulus of Resilience), kJ/m3 4.6 to 110
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.8 to 14
25
Strength to Weight: Bending, points 15 to 22
22
Thermal Diffusivity, mm2/s 94
2.9
Thermal Shock Resistance, points 3.4 to 6.2
20

Alloy Composition

Aluminum (Al), % 99.5 to 100
2.4 to 3.0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.4
8.0 to 11
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 0.15
Nickel (Ni), % 0
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.030
0.010 to 0.25
Vanadium (V), % 0 to 0.050
0
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 0 to 0.050
0.010 to 0.1