MakeItFrom.com
Menu (ESC)

1050 Aluminum vs. S31266 Stainless Steel

1050 aluminum belongs to the aluminum alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050 aluminum and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 4.6 to 37
40
Fatigue Strength, MPa 31 to 57
400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 52 to 81
590
Tensile Strength: Ultimate (UTS), MPa 76 to 140
860
Tensile Strength: Yield (Proof), MPa 25 to 120
470

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 650
1420
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 230
12
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.3
6.5
Embodied Energy, MJ/kg 160
89
Embodied Water, L/kg 1200
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 22
290
Resilience: Unit (Modulus of Resilience), kJ/m3 4.6 to 110
540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.8 to 14
29
Strength to Weight: Bending, points 15 to 22
24
Thermal Diffusivity, mm2/s 94
3.1
Thermal Shock Resistance, points 3.4 to 6.2
18

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0 to 0.050
1.0 to 2.5
Iron (Fe), % 0 to 0.4
34.1 to 46
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 0
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.030
0
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0