MakeItFrom.com
Menu (ESC)

1050A Aluminum vs. Commercially Pure Zinc

1050A aluminum belongs to the aluminum alloys classification, while commercially pure zinc belongs to the zinc alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050A aluminum and the bottom bar is commercially pure zinc.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
87
Elongation at Break, % 1.1 to 33
38
Poisson's Ratio 0.33
0.25
Shear Modulus, GPa 26
35
Tensile Strength: Ultimate (UTS), MPa 68 to 170
97
Tensile Strength: Yield (Proof), MPa 22 to 150
79

Thermal Properties

Latent Heat of Fusion, J/g 400
110
Maximum Temperature: Mechanical, °C 170
90
Melting Completion (Liquidus), °C 660
410
Melting Onset (Solidus), °C 650
400
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 230
110
Thermal Expansion, µm/m-K 24
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
27
Electrical Conductivity: Equal Weight (Specific), % IACS 200
37

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
11
Density, g/cm3 2.7
6.6
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1200
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9 to 19
34
Resilience: Unit (Modulus of Resilience), kJ/m3 3.7 to 160
36
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 6.9 to 18
4.1
Strength to Weight: Bending, points 14 to 25
7.1
Thermal Diffusivity, mm2/s 94
44
Thermal Shock Resistance, points 3.0 to 7.6
3.0

Alloy Composition

Aluminum (Al), % 99.5 to 100
0 to 0.010
Cadmium (Cd), % 0
0 to 0.010
Copper (Cu), % 0 to 0.050
0 to 0.080
Iron (Fe), % 0 to 0.4
0 to 0.020
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0
Silicon (Si), % 0 to 0.25
0
Tin (Sn), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.050
0 to 0.020
Zinc (Zn), % 0 to 0.070
99.827 to 100