MakeItFrom.com
Menu (ESC)

1050A Aluminum vs. EN 1.4008 Stainless Steel

1050A aluminum belongs to the aluminum alloys classification, while EN 1.4008 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050A aluminum and the bottom bar is EN 1.4008 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 33
17
Fatigue Strength, MPa 22 to 55
300
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 68 to 170
670
Tensile Strength: Yield (Proof), MPa 22 to 150
500

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
760
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 650
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
25
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 200
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
8.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.1
Embodied Energy, MJ/kg 150
30
Embodied Water, L/kg 1200
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9 to 19
100
Resilience: Unit (Modulus of Resilience), kJ/m3 3.7 to 160
630
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 6.9 to 18
24
Strength to Weight: Bending, points 14 to 25
22
Thermal Diffusivity, mm2/s 94
6.7
Thermal Shock Resistance, points 3.0 to 7.6
23

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
81.8 to 86.8
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 0.5
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.070
0