MakeItFrom.com
Menu (ESC)

1050A Aluminum vs. EN 1.4931 Steel

1050A aluminum belongs to the aluminum alloys classification, while EN 1.4931 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050A aluminum and the bottom bar is EN 1.4931 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 20 to 45
240
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 33
17
Fatigue Strength, MPa 22 to 55
410
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 68 to 170
810
Tensile Strength: Yield (Proof), MPa 22 to 150
620

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 650
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
24
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 200
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
8.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1200
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9 to 19
130
Resilience: Unit (Modulus of Resilience), kJ/m3 3.7 to 160
970
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 6.9 to 18
29
Strength to Weight: Bending, points 14 to 25
25
Thermal Diffusivity, mm2/s 94
6.5
Thermal Shock Resistance, points 3.0 to 7.6
22

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Carbon (C), % 0
0.2 to 0.26
Chromium (Cr), % 0
11.3 to 12.2
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
83.2 to 86.8
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0.5 to 0.8
Molybdenum (Mo), % 0
1.0 to 1.2
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.070
0