MakeItFrom.com
Menu (ESC)

1050A Aluminum vs. EN AC-46000 Aluminum

Both 1050A aluminum and EN AC-46000 aluminum are aluminum alloys. They have 85% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 1050A aluminum and the bottom bar is EN AC-46000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 20 to 45
91
Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 1.1 to 33
1.0
Fatigue Strength, MPa 22 to 55
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 68 to 170
270
Tensile Strength: Yield (Proof), MPa 22 to 150
160

Thermal Properties

Latent Heat of Fusion, J/g 400
530
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 660
620
Melting Onset (Solidus), °C 650
530
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 230
100
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
26
Electrical Conductivity: Equal Weight (Specific), % IACS 200
82

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.2
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1200
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9 to 19
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 3.7 to 160
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 6.9 to 18
26
Strength to Weight: Bending, points 14 to 25
33
Thermal Diffusivity, mm2/s 94
42
Thermal Shock Resistance, points 3.0 to 7.6
12

Alloy Composition

Aluminum (Al), % 99.5 to 100
79.7 to 90
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0 to 0.050
2.0 to 4.0
Iron (Fe), % 0 to 0.4
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0 to 0.050
0.050 to 0.55
Manganese (Mn), % 0 to 0.050
0 to 0.55
Nickel (Ni), % 0
0 to 0.55
Silicon (Si), % 0 to 0.25
8.0 to 11
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.050
0 to 0.25
Zinc (Zn), % 0 to 0.070
0 to 1.2
Residuals, % 0
0 to 0.25