MakeItFrom.com
Menu (ESC)

1050A Aluminum vs. Grade CY40 Nickel

1050A aluminum belongs to the aluminum alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050A aluminum and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 33
34
Fatigue Strength, MPa 22 to 55
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 68 to 170
540
Tensile Strength: Yield (Proof), MPa 22 to 150
220

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 660
1350
Melting Onset (Solidus), °C 650
1300
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
14
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
55
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.2
9.1
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1200
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9 to 19
150
Resilience: Unit (Modulus of Resilience), kJ/m3 3.7 to 160
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 6.9 to 18
18
Strength to Weight: Bending, points 14 to 25
18
Thermal Diffusivity, mm2/s 94
3.7
Thermal Shock Resistance, points 3.0 to 7.6
16

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Carbon (C), % 0
0 to 0.4
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
0 to 11
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Nickel (Ni), % 0
67 to 86
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 3.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.070
0