MakeItFrom.com
Menu (ESC)

1050A Aluminum vs. SAE-AISI 9260 Steel

1050A aluminum belongs to the aluminum alloys classification, while SAE-AISI 9260 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050A aluminum and the bottom bar is SAE-AISI 9260 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 20 to 45
200
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 33
21
Fatigue Strength, MPa 22 to 55
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 44 to 97
420
Tensile Strength: Ultimate (UTS), MPa 68 to 170
660
Tensile Strength: Yield (Proof), MPa 22 to 150
380

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 650
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
45
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 200
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1200
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9 to 19
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3.7 to 160
380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 6.9 to 18
24
Strength to Weight: Bending, points 14 to 25
22
Thermal Diffusivity, mm2/s 94
12
Thermal Shock Resistance, points 3.0 to 7.6
20

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Carbon (C), % 0
0.56 to 0.64
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
96.1 to 96.9
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0.75 to 1.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
1.8 to 2.2
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.070
0