MakeItFrom.com
Menu (ESC)

1050A Aluminum vs. N08810 Stainless Steel

1050A aluminum belongs to the aluminum alloys classification, while N08810 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050A aluminum and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 33
33
Fatigue Strength, MPa 22 to 55
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 44 to 97
340
Tensile Strength: Ultimate (UTS), MPa 68 to 170
520
Tensile Strength: Yield (Proof), MPa 22 to 150
200

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 660
1400
Melting Onset (Solidus), °C 650
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
12
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
30
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.2
5.3
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1200
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9 to 19
140
Resilience: Unit (Modulus of Resilience), kJ/m3 3.7 to 160
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 6.9 to 18
18
Strength to Weight: Bending, points 14 to 25
18
Thermal Diffusivity, mm2/s 94
3.0
Thermal Shock Resistance, points 3.0 to 7.6
13

Alloy Composition

Aluminum (Al), % 99.5 to 100
0.15 to 0.6
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 0 to 0.050
0 to 0.75
Iron (Fe), % 0 to 0.4
39.5 to 50.7
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Nickel (Ni), % 0
30 to 35
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.050
0.15 to 0.6
Zinc (Zn), % 0 to 0.070
0