MakeItFrom.com
Menu (ESC)

1050A Aluminum vs. N09777 Nickel

1050A aluminum belongs to the aluminum alloys classification, while N09777 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050A aluminum and the bottom bar is N09777 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 33
39
Fatigue Strength, MPa 22 to 55
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 44 to 97
400
Tensile Strength: Ultimate (UTS), MPa 68 to 170
580
Tensile Strength: Yield (Proof), MPa 22 to 150
240

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 660
1440
Melting Onset (Solidus), °C 650
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
38
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.2
7.4
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1200
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9 to 19
180
Resilience: Unit (Modulus of Resilience), kJ/m3 3.7 to 160
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 6.9 to 18
20
Strength to Weight: Bending, points 14 to 25
19
Thermal Shock Resistance, points 3.0 to 7.6
16

Alloy Composition

Aluminum (Al), % 99.5 to 100
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
14 to 19
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
28.5 to 47.5
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 5.5
Nickel (Ni), % 0
34 to 42
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.050
2.0 to 3.0
Zinc (Zn), % 0 to 0.070
0