MakeItFrom.com
Menu (ESC)

1050A Aluminum vs. S30615 Stainless Steel

1050A aluminum belongs to the aluminum alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050A aluminum and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 20 to 45
190
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 33
39
Fatigue Strength, MPa 22 to 55
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 44 to 97
470
Tensile Strength: Ultimate (UTS), MPa 68 to 170
690
Tensile Strength: Yield (Proof), MPa 22 to 150
310

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 660
1370
Melting Onset (Solidus), °C 650
1320
Specific Heat Capacity, J/kg-K 900
500
Thermal Conductivity, W/m-K 230
14
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
19
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.2
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1200
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9 to 19
220
Resilience: Unit (Modulus of Resilience), kJ/m3 3.7 to 160
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 6.9 to 18
25
Strength to Weight: Bending, points 14 to 25
23
Thermal Diffusivity, mm2/s 94
3.7
Thermal Shock Resistance, points 3.0 to 7.6
16

Alloy Composition

Aluminum (Al), % 99.5 to 100
0.8 to 1.5
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0
17 to 19.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
56.7 to 65.3
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Nickel (Ni), % 0
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.070
0