MakeItFrom.com
Menu (ESC)

1050A Aluminum vs. S42300 Stainless Steel

1050A aluminum belongs to the aluminum alloys classification, while S42300 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050A aluminum and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 20 to 45
330
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 33
9.1
Fatigue Strength, MPa 22 to 55
440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 44 to 97
650
Tensile Strength: Ultimate (UTS), MPa 68 to 170
1100
Tensile Strength: Yield (Proof), MPa 22 to 150
850

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 660
1470
Melting Onset (Solidus), °C 650
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
25
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 200
5.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.2
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1200
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9 to 19
93
Resilience: Unit (Modulus of Resilience), kJ/m3 3.7 to 160
1840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 6.9 to 18
39
Strength to Weight: Bending, points 14 to 25
30
Thermal Diffusivity, mm2/s 94
6.8
Thermal Shock Resistance, points 3.0 to 7.6
40

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Carbon (C), % 0
0.27 to 0.32
Chromium (Cr), % 0
11 to 12
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
82 to 85.1
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
1.0 to 1.4
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.070
0