MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. 6262 Aluminum

Both 1060 aluminum and 6262 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is 6262 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 1.1 to 30
4.6 to 10
Fatigue Strength, MPa 15 to 50
90 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 42 to 75
170 to 240
Tensile Strength: Ultimate (UTS), MPa 67 to 130
290 to 390
Tensile Strength: Yield (Proof), MPa 17 to 110
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 660
650
Melting Onset (Solidus), °C 650
580
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 230
170
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
44
Electrical Conductivity: Equal Weight (Specific), % IACS 210
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1200
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
17 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
530 to 940
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
48
Strength to Weight: Axial, points 6.9 to 13
29 to 39
Strength to Weight: Bending, points 14 to 21
35 to 42
Thermal Diffusivity, mm2/s 96
69
Thermal Shock Resistance, points 3.0 to 5.6
13 to 18

Alloy Composition

Aluminum (Al), % 99.6 to 100
94.7 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0.040 to 0.14
Copper (Cu), % 0 to 0.050
0.15 to 0.4
Iron (Fe), % 0 to 0.35
0 to 0.7
Lead (Pb), % 0
0.4 to 0.7
Magnesium (Mg), % 0 to 0.030
0.8 to 1.2
Manganese (Mn), % 0 to 0.030
0 to 0.15
Silicon (Si), % 0 to 0.25
0.4 to 0.8
Titanium (Ti), % 0 to 0.030
0 to 0.15
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.25
Residuals, % 0
0 to 0.15