MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. ACI-ASTM CD3MN Steel

1060 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CD3MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is ACI-ASTM CD3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 30
29
Fatigue Strength, MPa 15 to 50
340
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 67 to 130
710
Tensile Strength: Yield (Proof), MPa 17 to 110
460

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
1060
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 650
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
16
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 210
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.6
Embodied Energy, MJ/kg 160
50
Embodied Water, L/kg 1200
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
180
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 6.9 to 13
25
Strength to Weight: Bending, points 14 to 21
23
Thermal Diffusivity, mm2/s 96
4.3
Thermal Shock Resistance, points 3.0 to 5.6
20

Alloy Composition

Aluminum (Al), % 99.6 to 100
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21 to 23.5
Copper (Cu), % 0 to 0.050
0 to 1.0
Iron (Fe), % 0 to 0.35
62.6 to 71.9
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0 to 1.5
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0