MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. ACI-ASTM CT15C Steel

1060 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CT15C steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is ACI-ASTM CT15C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 30
23
Fatigue Strength, MPa 15 to 50
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 67 to 130
500
Tensile Strength: Yield (Proof), MPa 17 to 110
190

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1080
Melting Completion (Liquidus), °C 660
1410
Melting Onset (Solidus), °C 650
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
12
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 210
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
6.1
Embodied Energy, MJ/kg 160
88
Embodied Water, L/kg 1200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
90
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
93
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 6.9 to 13
17
Strength to Weight: Bending, points 14 to 21
17
Thermal Diffusivity, mm2/s 96
3.2
Thermal Shock Resistance, points 3.0 to 5.6
12

Alloy Composition

Aluminum (Al), % 99.6 to 100
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.35
40.3 to 49.2
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0.15 to 1.5
Nickel (Ni), % 0
31 to 34
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0.15 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0