MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. AISI 316Cb Stainless Steel

1060 aluminum belongs to the aluminum alloys classification, while AISI 316Cb stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is AISI 316Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 30
34
Fatigue Strength, MPa 15 to 50
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 42 to 75
390
Tensile Strength: Ultimate (UTS), MPa 67 to 130
580
Tensile Strength: Yield (Proof), MPa 17 to 110
230

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 650
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 210
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.4
Embodied Energy, MJ/kg 160
61
Embodied Water, L/kg 1200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
160
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 6.9 to 13
20
Strength to Weight: Bending, points 14 to 21
20
Thermal Diffusivity, mm2/s 96
4.1
Thermal Shock Resistance, points 3.0 to 5.6
13

Alloy Composition

Aluminum (Al), % 99.6 to 100
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.35
60.9 to 72
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0