MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. EN 1.4020 Stainless Steel

1060 aluminum belongs to the aluminum alloys classification, while EN 1.4020 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is EN 1.4020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 30
13 to 34
Fatigue Strength, MPa 15 to 50
340 to 540
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 42 to 75
510 to 680
Tensile Strength: Ultimate (UTS), MPa 67 to 130
770 to 1130
Tensile Strength: Yield (Proof), MPa 17 to 110
430 to 950

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 660
1390
Melting Onset (Solidus), °C 650
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.3
2.5
Embodied Energy, MJ/kg 160
37
Embodied Water, L/kg 1200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
140 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
460 to 2290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 6.9 to 13
28 to 41
Strength to Weight: Bending, points 14 to 21
25 to 32
Thermal Shock Resistance, points 3.0 to 5.6
16 to 23

Alloy Composition

Aluminum (Al), % 99.6 to 100
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16.5 to 19
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.35
62.8 to 71.8
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
11 to 14
Nickel (Ni), % 0
0.5 to 2.5
Nitrogen (N), % 0
0.2 to 0.45
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0