MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. EN 1.4525 Stainless Steel

1060 aluminum belongs to the aluminum alloys classification, while EN 1.4525 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 30
5.6 to 13
Fatigue Strength, MPa 15 to 50
480 to 540
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 67 to 130
1030 to 1250
Tensile Strength: Yield (Proof), MPa 17 to 110
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
860
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 650
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
18
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 210
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 1200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
1820 to 3230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 6.9 to 13
36 to 45
Strength to Weight: Bending, points 14 to 21
29 to 33
Thermal Diffusivity, mm2/s 96
4.7
Thermal Shock Resistance, points 3.0 to 5.6
34 to 41

Alloy Composition

Aluminum (Al), % 99.6 to 100
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.050
2.5 to 4.0
Iron (Fe), % 0 to 0.35
70.4 to 79
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0

Comparable Variants