MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. EN 1.4587 Stainless Steel

1060 aluminum belongs to the aluminum alloys classification, while EN 1.4587 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is EN 1.4587 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 30
34
Fatigue Strength, MPa 15 to 50
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 67 to 130
540
Tensile Strength: Yield (Proof), MPa 17 to 110
250

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 650
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
17
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 210
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.3
Embodied Energy, MJ/kg 160
87
Embodied Water, L/kg 1200
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
150
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 6.9 to 13
18
Strength to Weight: Bending, points 14 to 21
18
Thermal Diffusivity, mm2/s 96
4.5
Thermal Shock Resistance, points 3.0 to 5.6
13

Alloy Composition

Aluminum (Al), % 99.6 to 100
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
2.0 to 3.0
Iron (Fe), % 0 to 0.35
32.7 to 41.9
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
28 to 30
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0