MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. Grade 18 Titanium

1060 aluminum belongs to the aluminum alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 30
11 to 17
Fatigue Strength, MPa 15 to 50
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 42 to 75
420 to 590
Tensile Strength: Ultimate (UTS), MPa 67 to 130
690 to 980
Tensile Strength: Yield (Proof), MPa 17 to 110
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 660
1640
Melting Onset (Solidus), °C 650
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 230
8.3
Thermal Expansion, µm/m-K 24
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 210
2.7

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.3
41
Embodied Energy, MJ/kg 160
670
Embodied Water, L/kg 1200
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
1380 to 3110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 6.9 to 13
43 to 61
Strength to Weight: Bending, points 14 to 21
39 to 49
Thermal Diffusivity, mm2/s 96
3.4
Thermal Shock Resistance, points 3.0 to 5.6
47 to 67

Alloy Composition

Aluminum (Al), % 99.6 to 100
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.35
0 to 0.25
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.030
92.5 to 95.5
Vanadium (V), % 0 to 0.050
2.0 to 3.0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0
0 to 0.4

Comparable Variants