MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. C37100 Brass

1060 aluminum belongs to the aluminum alloys classification, while C37100 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is C37100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 1.1 to 30
8.0 to 40
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Shear Strength, MPa 42 to 75
260 to 300
Tensile Strength: Ultimate (UTS), MPa 67 to 130
370 to 520
Tensile Strength: Yield (Proof), MPa 17 to 110
150 to 390

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 660
900
Melting Onset (Solidus), °C 650
890
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 230
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
27
Electrical Conductivity: Equal Weight (Specific), % IACS 210
30

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 1200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
38 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
110 to 750
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 6.9 to 13
13 to 18
Strength to Weight: Bending, points 14 to 21
14 to 18
Thermal Diffusivity, mm2/s 96
39
Thermal Shock Resistance, points 3.0 to 5.6
12 to 17

Alloy Composition

Aluminum (Al), % 99.6 to 100
0
Copper (Cu), % 0 to 0.050
58 to 62
Iron (Fe), % 0 to 0.35
0 to 0.15
Lead (Pb), % 0
0.6 to 1.2
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
36.3 to 41.4
Residuals, % 0
0 to 0.4