MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. N12160 Nickel

1060 aluminum belongs to the aluminum alloys classification, while N12160 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.1 to 30
45
Fatigue Strength, MPa 15 to 50
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 42 to 75
500
Tensile Strength: Ultimate (UTS), MPa 67 to 130
710
Tensile Strength: Yield (Proof), MPa 17 to 110
270

Thermal Properties

Latent Heat of Fusion, J/g 400
360
Maximum Temperature: Mechanical, °C 170
1060
Melting Completion (Liquidus), °C 660
1330
Melting Onset (Solidus), °C 650
1280
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
11
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
90
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.3
8.5
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1200
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
260
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 6.9 to 13
24
Strength to Weight: Bending, points 14 to 21
22
Thermal Diffusivity, mm2/s 96
2.8
Thermal Shock Resistance, points 3.0 to 5.6
19

Alloy Composition

Aluminum (Al), % 99.6 to 100
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
26 to 30
Cobalt (Co), % 0
27 to 33
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.35
0 to 3.5
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
2.4 to 3.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.030
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0