MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. S15500 Stainless Steel

1060 aluminum belongs to the aluminum alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 30
6.8 to 16
Fatigue Strength, MPa 15 to 50
350 to 650
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 42 to 75
540 to 870
Tensile Strength: Ultimate (UTS), MPa 67 to 130
890 to 1490
Tensile Strength: Yield (Proof), MPa 17 to 110
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
820
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 650
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
17
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 210
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 1200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
890 to 4460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 6.9 to 13
32 to 53
Strength to Weight: Bending, points 14 to 21
26 to 37
Thermal Diffusivity, mm2/s 96
4.6
Thermal Shock Resistance, points 3.0 to 5.6
30 to 50

Alloy Composition

Aluminum (Al), % 99.6 to 100
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 0 to 0.050
2.5 to 4.5
Iron (Fe), % 0 to 0.35
71.9 to 79.9
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0