MakeItFrom.com
Menu (ESC)

1070 Aluminum vs. EN 1.1140 Steel

1070 aluminum belongs to the aluminum alloys classification, while EN 1.1140 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1070 aluminum and the bottom bar is EN 1.1140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 39
28
Fatigue Strength, MPa 22 to 49
170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 48 to 79
280
Tensile Strength: Ultimate (UTS), MPa 73 to 140
430
Tensile Strength: Yield (Proof), MPa 17 to 120
230

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
51
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 200
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 160
18
Embodied Water, L/kg 1200
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 21
100
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 110
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.5 to 14
15
Strength to Weight: Bending, points 14 to 22
16
Thermal Diffusivity, mm2/s 94
14
Thermal Shock Resistance, points 3.3 to 6.1
14

Alloy Composition

Aluminum (Al), % 99.7 to 100
0
Carbon (C), % 0
0.12 to 0.18
Copper (Cu), % 0 to 0.040
0
Iron (Fe), % 0 to 0.25
98.7 to 99.56
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 0.4
Sulfur (S), % 0
0.020 to 0.040
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.040
0
Residuals, % 0 to 0.030
0