MakeItFrom.com
Menu (ESC)

1070 Aluminum vs. Grade 6 Titanium

1070 aluminum belongs to the aluminum alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 1070 aluminum and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 4.5 to 39
11
Fatigue Strength, MPa 22 to 49
290
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
39
Shear Strength, MPa 48 to 79
530
Tensile Strength: Ultimate (UTS), MPa 73 to 140
890
Tensile Strength: Yield (Proof), MPa 17 to 120
840

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
310
Melting Completion (Liquidus), °C 640
1580
Melting Onset (Solidus), °C 640
1530
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 230
7.8
Thermal Expansion, µm/m-K 23
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.3
30
Embodied Energy, MJ/kg 160
480
Embodied Water, L/kg 1200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 21
92
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 110
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 7.5 to 14
55
Strength to Weight: Bending, points 14 to 22
46
Thermal Diffusivity, mm2/s 94
3.2
Thermal Shock Resistance, points 3.3 to 6.1
65

Alloy Composition

Aluminum (Al), % 99.7 to 100
4.0 to 6.0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.040
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.25
0 to 0.5
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0 to 0.030
89.8 to 94
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.040
0
Residuals, % 0
0 to 0.4