MakeItFrom.com
Menu (ESC)

1070 Aluminum vs. R30155 Cobalt

1070 aluminum belongs to the aluminum alloys classification, while R30155 cobalt belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1070 aluminum and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 4.5 to 39
34
Fatigue Strength, MPa 22 to 49
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 48 to 79
570
Tensile Strength: Ultimate (UTS), MPa 73 to 140
850
Tensile Strength: Yield (Proof), MPa 17 to 120
390

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 230
12
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
9.7
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1200
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 21
230
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 110
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 7.5 to 14
28
Strength to Weight: Bending, points 14 to 22
24
Thermal Diffusivity, mm2/s 94
3.2
Thermal Shock Resistance, points 3.3 to 6.1
21

Alloy Composition

Aluminum (Al), % 99.7 to 100
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.040
0
Iron (Fe), % 0 to 0.25
24.3 to 36.2
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Titanium (Ti), % 0 to 0.030
0
Tungsten (W), % 0
2.0 to 3.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.040
0
Residuals, % 0 to 0.030
0