MakeItFrom.com
Menu (ESC)

1070A Aluminum vs. EN 1.8507 Steel

1070A aluminum belongs to the aluminum alloys classification, while EN 1.8507 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1070A aluminum and the bottom bar is EN 1.8507 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 18 to 40
270
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.3 to 33
16
Fatigue Strength, MPa 17 to 51
440
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 44 to 81
550
Tensile Strength: Ultimate (UTS), MPa 68 to 140
900
Tensile Strength: Yield (Proof), MPa 17 to 120
670

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 640
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
41
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 200
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1200
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 18
130
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
1210
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.0 to 14
32
Strength to Weight: Bending, points 14 to 22
27
Thermal Diffusivity, mm2/s 94
11
Thermal Shock Resistance, points 3.1 to 6.3
26

Alloy Composition

Aluminum (Al), % 99.7 to 100
0.8 to 1.2
Carbon (C), % 0
0.3 to 0.37
Chromium (Cr), % 0
1.0 to 1.3
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.25
96.1 to 97.7
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0.4 to 0.7
Molybdenum (Mo), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 0 to 0.070
0