MakeItFrom.com
Menu (ESC)

1070A Aluminum vs. EN 2.4816 Nickel

1070A aluminum belongs to the aluminum alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1070A aluminum and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 18 to 40
170
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.3 to 33
34
Fatigue Strength, MPa 17 to 51
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 44 to 81
470
Tensile Strength: Ultimate (UTS), MPa 68 to 140
700
Tensile Strength: Yield (Proof), MPa 17 to 120
270

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 640
1320
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 230
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.2
9.0
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1200
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 18
190
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 7.0 to 14
23
Strength to Weight: Bending, points 14 to 22
21
Thermal Diffusivity, mm2/s 94
3.8
Thermal Shock Resistance, points 3.1 to 6.3
20

Alloy Composition

Aluminum (Al), % 99.7 to 100
0 to 0.3
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 0 to 0.030
0 to 0.5
Iron (Fe), % 0 to 0.25
6.0 to 10
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Nickel (Ni), % 0
72 to 80
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.030
0 to 0.3
Zinc (Zn), % 0 to 0.070
0