MakeItFrom.com
Menu (ESC)

1070A Aluminum vs. CC382H Copper-nickel

1070A aluminum belongs to the aluminum alloys classification, while CC382H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1070A aluminum and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 18 to 40
130
Elastic (Young's, Tensile) Modulus, GPa 68
140
Elongation at Break, % 2.3 to 33
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
53
Tensile Strength: Ultimate (UTS), MPa 68 to 140
490
Tensile Strength: Yield (Proof), MPa 17 to 120
290

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 640
1180
Melting Onset (Solidus), °C 640
1120
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 230
30
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 200
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
41
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.2
5.2
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1200
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 18
85
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
290
Stiffness to Weight: Axial, points 14
8.8
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 7.0 to 14
15
Strength to Weight: Bending, points 14 to 22
16
Thermal Diffusivity, mm2/s 94
8.2
Thermal Shock Resistance, points 3.1 to 6.3
16

Alloy Composition

Aluminum (Al), % 99.7 to 100
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 0 to 0.030
62.8 to 68.4
Iron (Fe), % 0 to 0.25
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0 to 0.030
0 to 0.010
Manganese (Mn), % 0 to 0.030
0.5 to 1.0
Nickel (Ni), % 0
29 to 32
Phosphorus (P), % 0
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.2
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.030
0 to 0.25
Zinc (Zn), % 0 to 0.070
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15