MakeItFrom.com
Menu (ESC)

1070A Aluminum vs. S35500 Stainless Steel

1070A aluminum belongs to the aluminum alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1070A aluminum and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 2.3 to 33
14
Fatigue Strength, MPa 17 to 51
690 to 730
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 44 to 81
810 to 910
Tensile Strength: Ultimate (UTS), MPa 68 to 140
1330 to 1490
Tensile Strength: Yield (Proof), MPa 17 to 120
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
16
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.5
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 18
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
3610 to 4100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 7.0 to 14
47 to 53
Strength to Weight: Bending, points 14 to 22
34 to 37
Thermal Diffusivity, mm2/s 94
4.4
Thermal Shock Resistance, points 3.1 to 6.3
44 to 49

Alloy Composition

Aluminum (Al), % 99.7 to 100
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.25
73.2 to 77.7
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 0 to 0.070
0

Comparable Variants