MakeItFrom.com
Menu (ESC)

1080 Aluminum vs. ASTM A387 Grade 2 Steel

1080 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080 aluminum and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.6 to 40
25
Fatigue Strength, MPa 21 to 48
190 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 49 to 78
300 to 350
Tensile Strength: Ultimate (UTS), MPa 72 to 130
470 to 550
Tensile Strength: Yield (Proof), MPa 17 to 120
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
45
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 200
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.6
Embodied Energy, MJ/kg 160
20
Embodied Water, L/kg 1200
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.7 to 21
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
180 to 320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.4 to 14
16 to 20
Strength to Weight: Bending, points 14 to 22
17 to 19
Thermal Diffusivity, mm2/s 94
12
Thermal Shock Resistance, points 3.2 to 6.0
14 to 16

Alloy Composition

Aluminum (Al), % 99.8 to 100
0
Carbon (C), % 0
0.050 to 0.21
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 0 to 0.030
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
97.1 to 98.3
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.030
0
Residuals, % 0 to 0.020
0

Comparable Variants