MakeItFrom.com
Menu (ESC)

1080 Aluminum vs. EN 1.7218 Steel

1080 aluminum belongs to the aluminum alloys classification, while EN 1.7218 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080 aluminum and the bottom bar is EN 1.7218 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 72 to 130
500 to 1550

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
44
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 200
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 160
20
Embodied Water, L/kg 1200
52

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.4 to 14
18 to 55
Strength to Weight: Bending, points 14 to 22
18 to 38
Thermal Diffusivity, mm2/s 94
12
Thermal Shock Resistance, points 3.2 to 6.0
15 to 46

Alloy Composition

Aluminum (Al), % 99.8 to 100
0 to 0.040
Carbon (C), % 0
0.22 to 0.29
Chromium (Cr), % 0
0.9 to 1.2
Copper (Cu), % 0 to 0.030
0 to 0.3
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
96.2 to 98.1
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0.6 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.030
0
Residuals, % 0 to 0.020
0

Comparable Variants