MakeItFrom.com
Menu (ESC)

1080 Aluminum vs. EN AC-46500 Aluminum

Both 1080 aluminum and EN AC-46500 aluminum are aluminum alloys. They have 84% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 1080 aluminum and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
74
Elongation at Break, % 4.6 to 40
1.0
Fatigue Strength, MPa 21 to 48
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 72 to 130
270
Tensile Strength: Yield (Proof), MPa 17 to 120
160

Thermal Properties

Latent Heat of Fusion, J/g 400
520
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 640
520
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 230
100
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
26
Electrical Conductivity: Equal Weight (Specific), % IACS 200
81

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.3
7.6
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1200
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.7 to 21
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 7.4 to 14
26
Strength to Weight: Bending, points 14 to 22
32
Thermal Diffusivity, mm2/s 94
41
Thermal Shock Resistance, points 3.2 to 6.0
12

Alloy Composition

Aluminum (Al), % 99.8 to 100
77.9 to 90
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0 to 0.030
2.0 to 4.0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0 to 0.020
0.050 to 0.55
Manganese (Mn), % 0 to 0.020
0 to 0.55
Nickel (Ni), % 0
0 to 0.55
Silicon (Si), % 0 to 0.15
8.0 to 11
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.030
0 to 0.25
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.030
0 to 3.0
Residuals, % 0
0 to 0.25