MakeItFrom.com
Menu (ESC)

1080 Aluminum vs. CC330G Bronze

1080 aluminum belongs to the aluminum alloys classification, while CC330G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080 aluminum and the bottom bar is CC330G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 4.6 to 40
20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 72 to 130
530
Tensile Strength: Yield (Proof), MPa 17 to 120
190

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 640
1050
Melting Onset (Solidus), °C 640
1000
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 230
62
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
14
Electrical Conductivity: Equal Weight (Specific), % IACS 200
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.3
3.2
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 1200
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.7 to 21
82
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
170
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 7.4 to 14
18
Strength to Weight: Bending, points 14 to 22
17
Thermal Diffusivity, mm2/s 94
17
Thermal Shock Resistance, points 3.2 to 6.0
19

Alloy Composition

Aluminum (Al), % 99.8 to 100
8.0 to 10.5
Copper (Cu), % 0 to 0.030
87 to 92
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
0 to 1.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 0 to 0.15
0 to 0.2
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.030
0 to 0.5
Residuals, % 0 to 0.020
0