MakeItFrom.com
Menu (ESC)

1080 Aluminum vs. Nickel 333

1080 aluminum belongs to the aluminum alloys classification, while nickel 333 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080 aluminum and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 4.6 to 40
34
Fatigue Strength, MPa 21 to 48
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 49 to 78
420
Tensile Strength: Ultimate (UTS), MPa 72 to 130
630
Tensile Strength: Yield (Proof), MPa 17 to 120
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 640
1410
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 230
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
8.5
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1200
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.7 to 21
170
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 7.4 to 14
21
Strength to Weight: Bending, points 14 to 22
19
Thermal Diffusivity, mm2/s 94
2.9
Thermal Shock Resistance, points 3.2 to 6.0
16

Alloy Composition

Aluminum (Al), % 99.8 to 100
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0 to 0.030
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
9.3 to 24.5
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 48
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Tungsten (W), % 0
2.5 to 4.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.030
0
Residuals, % 0 to 0.020
0