MakeItFrom.com
Menu (ESC)

1080 Aluminum vs. SAE-AISI D2 Steel

1080 aluminum belongs to the aluminum alloys classification, while SAE-AISI D2 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080 aluminum and the bottom bar is SAE-AISI D2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.6 to 40
5.0 to 16
Fatigue Strength, MPa 21 to 48
310 to 860
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 49 to 78
460 to 1160
Tensile Strength: Ultimate (UTS), MPa 72 to 130
760 to 2000
Tensile Strength: Yield (Proof), MPa 17 to 120
470 to 1510

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 640
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
31
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
4.3
Electrical Conductivity: Equal Weight (Specific), % IACS 200
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 160
50
Embodied Water, L/kg 1200
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.7 to 21
92 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
570 to 5940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 7.4 to 14
27 to 72
Strength to Weight: Bending, points 14 to 22
24 to 46
Thermal Diffusivity, mm2/s 94
8.3
Thermal Shock Resistance, points 3.2 to 6.0
25 to 67

Alloy Composition

Aluminum (Al), % 99.8 to 100
0
Carbon (C), % 0
1.4 to 1.6
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 0 to 0.030
0 to 0.25
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
81.3 to 86.9
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0 to 0.6
Molybdenum (Mo), % 0
0.7 to 1.2
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0 to 1.1
Zinc (Zn), % 0 to 0.030
0
Residuals, % 0 to 0.020
0

Comparable Variants