MakeItFrom.com
Menu (ESC)

1080 Aluminum vs. C86200 Bronze

1080 aluminum belongs to the aluminum alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080 aluminum and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 4.6 to 40
21
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 72 to 130
710
Tensile Strength: Yield (Proof), MPa 17 to 120
350

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 640
940
Melting Onset (Solidus), °C 640
900
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 230
35
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 200
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 1200
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.7 to 21
120
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
540
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 7.4 to 14
25
Strength to Weight: Bending, points 14 to 22
22
Thermal Diffusivity, mm2/s 94
11
Thermal Shock Resistance, points 3.2 to 6.0
23

Alloy Composition

Aluminum (Al), % 99.8 to 100
3.0 to 4.9
Copper (Cu), % 0 to 0.030
60 to 66
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
2.5 to 5.0
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.030
22 to 28
Residuals, % 0
0 to 1.0