MakeItFrom.com
Menu (ESC)

1080A Aluminum vs. ASTM A369 Grade FP9

1080A aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080A aluminum and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 18 to 40
140
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.3 to 34
20
Fatigue Strength, MPa 18 to 50
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 49 to 81
300
Tensile Strength: Ultimate (UTS), MPa 74 to 140
470
Tensile Strength: Yield (Proof), MPa 17 to 120
240

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 640
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
26
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 200
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.0
Embodied Energy, MJ/kg 160
28
Embodied Water, L/kg 1200
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 19
80
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 7.6 to 15
17
Strength to Weight: Bending, points 14 to 22
17
Thermal Diffusivity, mm2/s 94
6.9
Thermal Shock Resistance, points 3.3 to 6.4
13

Alloy Composition

Aluminum (Al), % 99.8 to 100
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 0 to 0.030
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
87.1 to 90.3
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.060
0