MakeItFrom.com
Menu (ESC)

1080A Aluminum vs. EN 1.4872 Stainless Steel

1080A aluminum belongs to the aluminum alloys classification, while EN 1.4872 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080A aluminum and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 18 to 40
270
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 2.3 to 34
28
Fatigue Strength, MPa 18 to 50
410
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 49 to 81
620
Tensile Strength: Ultimate (UTS), MPa 74 to 140
950
Tensile Strength: Yield (Proof), MPa 17 to 120
560

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 640
1340
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 230
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.3
3.3
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 1200
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 19
230
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
780
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 7.6 to 15
35
Strength to Weight: Bending, points 14 to 22
28
Thermal Diffusivity, mm2/s 94
3.9
Thermal Shock Resistance, points 3.3 to 6.4
21

Alloy Composition

Aluminum (Al), % 99.8 to 100
0
Carbon (C), % 0
0.2 to 0.3
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.030
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
54.2 to 61.6
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
8.0 to 10
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.060
0