MakeItFrom.com
Menu (ESC)

1080A Aluminum vs. Grade CZ100 Nickel

1080A aluminum belongs to the aluminum alloys classification, while grade CZ100 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080A aluminum and the bottom bar is grade CZ100 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
180
Elongation at Break, % 2.3 to 34
11
Fatigue Strength, MPa 18 to 50
68
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
69
Tensile Strength: Ultimate (UTS), MPa 74 to 140
390
Tensile Strength: Yield (Proof), MPa 17 to 120
140

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 640
1300
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 230
73
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
19
Electrical Conductivity: Equal Weight (Specific), % IACS 200
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1200
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 19
35
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
54
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 7.6 to 15
12
Strength to Weight: Bending, points 14 to 22
14
Thermal Diffusivity, mm2/s 94
19
Thermal Shock Resistance, points 3.3 to 6.4
14

Alloy Composition

Aluminum (Al), % 99.8 to 100
0
Carbon (C), % 0
0 to 1.0
Copper (Cu), % 0 to 0.030
0 to 1.3
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
0 to 3.0
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0 to 1.5
Nickel (Ni), % 0
95 to 100
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.060
0