MakeItFrom.com
Menu (ESC)

1080A Aluminum vs. Grade TDCrV Steel

1080A aluminum belongs to the aluminum alloys classification, while grade TDCrV steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080A aluminum and the bottom bar is grade TDCrV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 18 to 40
520
Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 74 to 140
1730

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 640
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
49
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 200
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.9
Embodied Energy, MJ/kg 160
26
Embodied Water, L/kg 1200
49

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.6 to 15
61
Strength to Weight: Bending, points 14 to 22
41
Thermal Diffusivity, mm2/s 94
13
Thermal Shock Resistance, points 3.3 to 6.4
51

Alloy Composition

Aluminum (Al), % 99.8 to 100
0
Carbon (C), % 0
0.62 to 0.72
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 0 to 0.030
0 to 0.1
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
97.8 to 98.8
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0.5 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0.15 to 0.3
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.060
0