MakeItFrom.com
Menu (ESC)

1080A Aluminum vs. C44400 Brass

1080A aluminum belongs to the aluminum alloys classification, while C44400 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080A aluminum and the bottom bar is C44400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 74 to 140
350
Tensile Strength: Yield (Proof), MPa 17 to 120
120

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 640
940
Melting Onset (Solidus), °C 640
900
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 230
110
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
25
Electrical Conductivity: Equal Weight (Specific), % IACS 200
27

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 160
46
Embodied Water, L/kg 1200
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
65
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 7.6 to 15
12
Strength to Weight: Bending, points 14 to 22
13
Thermal Diffusivity, mm2/s 94
35
Thermal Shock Resistance, points 3.3 to 6.4
12

Alloy Composition

Aluminum (Al), % 99.8 to 100
0
Antimony (Sb), % 0
0.020 to 0.1
Copper (Cu), % 0 to 0.030
70 to 73
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0
0.9 to 1.2
Titanium (Ti), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.060
25.2 to 29.1
Residuals, % 0
0 to 0.4