MakeItFrom.com
Menu (ESC)

1080A Aluminum vs. N06219 Nickel

1080A aluminum belongs to the aluminum alloys classification, while N06219 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080A aluminum and the bottom bar is N06219 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 2.3 to 34
48
Fatigue Strength, MPa 18 to 50
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Shear Strength, MPa 49 to 81
520
Tensile Strength: Ultimate (UTS), MPa 74 to 140
730
Tensile Strength: Yield (Proof), MPa 17 to 120
300

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 640
1380
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 230
10
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
11
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1200
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 19
280
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 7.6 to 15
24
Strength to Weight: Bending, points 14 to 22
21
Thermal Diffusivity, mm2/s 94
2.7
Thermal Shock Resistance, points 3.3 to 6.4
21

Alloy Composition

Aluminum (Al), % 99.8 to 100
0 to 0.5
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
18 to 22
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.030
0 to 0.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
2.0 to 4.0
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0 to 0.5
Molybdenum (Mo), % 0
7.0 to 9.0
Nickel (Ni), % 0
60.8 to 72.3
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0.7 to 1.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.020
0 to 0.5
Zinc (Zn), % 0 to 0.060
0