MakeItFrom.com
Menu (ESC)

1080A Aluminum vs. R30155 Cobalt

1080A aluminum belongs to the aluminum alloys classification, while R30155 cobalt belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080A aluminum and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 18 to 40
220
Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 2.3 to 34
34
Fatigue Strength, MPa 18 to 50
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 49 to 81
570
Tensile Strength: Ultimate (UTS), MPa 74 to 140
850
Tensile Strength: Yield (Proof), MPa 17 to 120
390

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 230
12
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
9.7
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1200
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 19
230
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 7.6 to 15
28
Strength to Weight: Bending, points 14 to 22
24
Thermal Diffusivity, mm2/s 94
3.2
Thermal Shock Resistance, points 3.3 to 6.4
21

Alloy Composition

Aluminum (Al), % 99.8 to 100
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.030
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
24.3 to 36.2
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Titanium (Ti), % 0 to 0.020
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.060
0